已知二次函数与两坐标轴分别交于不同的三点A、B、C.(1)求实数t的取值范围;(2)当时,求经过A、B、C三点的圆F的方程;(3)过原点作两条相互垂直的直线分别交圆F于M、N、P、Q四点,求四边形的面积的最大值。
如图,设抛物线的准线与轴交于,焦点为;以为焦点,离心率的椭圆与抛物线在轴上方的交点为,延长交抛物线于点,是抛物线上一动点,且M在与之间运动.(1)当时,求椭圆的方程;(2)当的边长恰好是三个连续的自然数时,求 面积的最大值.
(14 分)从甲地到乙地一天共有A、B 两班车,由于雨雪天气的影响,一段时间内A 班车正点到达乙地的概率为0.7,B 班车正点到达乙地的概率为0.75。(1)有三位游客分别乘坐三天的A 班车,从甲地到乙地,求其中恰有两名游客正点到达的概率(答案用数字表示)。(2)有两位游客分别乘坐A、B 班车,从甲地到乙地,求其中至少有1 人正点到达的概率(答案用数字表示)。
(14 分)如图(1)是一正方体的表面展开图,MN 和PB 是两条面对角线,请在图(2)的正方体中将MN 和PB 画出来,并就这个正方体解决下面问题。(1)求证:MN//平面PBD;(2)求证:AQ⊥平面PBD;(3)求二面角P—DB—M 的大小.
(14 分)已知函数的最大值为1.(1)求常数a 的值;(2)求的单调递增区间;(3)求≥ 0 成立的x 的取值集合.
已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程.(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.