为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图:规定:当产品中的此种元素含量不小于18毫克时,该产品为优等品.(1)试用上述样本数据估计甲、乙两厂生产的优等品率;(2)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望;(3)从甲厂的10件样品中有放回的随机抽取3件,也从乙厂的10件样品中有放回的随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.
定义在R上的偶函数满足,时,。(1)求时,的解析式;(2)求证:函数在区间上递减。
已知偶函数在上是减函数,求不等式的解集。
已知集合A=,B=.若A∩B=B,求实数的取值范围.
在平面直角坐标系中,椭圆为(1)若一直线与椭圆交于两不同点,且线段恰以点为中点,求直线的方程;(2)若过点的直线(非轴)与椭圆相交于两个不同点试问在轴上是否存在定点,使恒为定值?若存在,求出点的坐标及实数的值;若不存在,请说明理由.
标准方程下的椭圆的短轴长为,焦点,右准线与轴相交于点,且,过点的直线和椭圆相交于点.(1)求椭圆的方程和离心率;(2)若,求直线的方程.