已知抛物线的顶点在坐标原点,焦点在轴上,且过点.(1)求抛物线的标准方程;(2)与圆相切的直线交抛物线于不同的两点若抛物线上一点满足,求的取值范围.
某同学参加高二学业水平测试的4门必修科目考试,已知该同学每门学科考试成绩达到“A”等级的概率均为,且每门考试成绩的结果互不影响. 求该同学至少得到两个“A”的概率; (2)已知在高考成绩计分时,每有一科达到“A”,则高考成绩加1分,如果4门学科均达到“A”,则高考成绩额外再加1分.现用随机变量Y表示该同学学业水平测试的总加分,求Y的概率分布列和数学期望.
如图,单位正方形OABC在二阶矩阵T的作用下,变成菱形OA1B1C1.求矩阵T;设双曲线F:x2-y2=1在矩阵T对应的变换作用下得到曲线F´,求曲线F´的方程.
已知极坐标系的极点在平面直角坐标系的原点O处,极轴与x轴的非负半轴重合,且长度单位相同.若圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l与圆C交于A,B两点.(1)求圆C的直角坐标方程与直线l的普通方程;(2)求弦AB的长.
已知函数,,其中.(1)当时,求曲线在点处的切线方程;(2)若存在,使得成立,求实数M的最大值;(3)若对任意的,都有,求实数的取值范围.
已知二次函数(R).(1)解不等式;(2)函数在上有零点,求的取值范围.