端午节期间,某校“慈善小组”筹集到1240元善款,全部用于购买水果和粽子,然后到福利院送给老人,决定购买大枣粽子和普通粽子共20盒,剩下的钱用于购买水果,要求购买水果的钱数不少于180元但不超过240元.已知大枣粽子比普通粽子每盒贵15元,若用300元恰好可以买到2盒大枣粽子和4盒普通粽子.(1)请求出两种口味的粽子每盒的价格;(2)设买大枣粽子x盒,买水果共用了w元.①请求出w关于x的函数关系式;②求出购买两种粽子的可能方案,并说明哪一种方案使购买水果的钱数最多.
如图,点B、F、C、E在一条直线上,BF=EC,AB∥ED,AC∥FD,求证:AC=DF.
如图:在88的正方形网格中,已知网格中小正方形的边长为1, 的三个顶点在格点上。 (1)画出关于直线的对称图形; (2)_____________直角三角形(填“是”或“不是” (3)的面积是_____________
尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).
如图,已知正方形ABCD的边长为10cm,点E在边AB上,且AE=4cm, (1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动. ①若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由. ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为________cm/s时,在某一时刻也能够使△BPE与△CQP全等. (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD的四条边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在何处?
小王剪了两张直角三角形纸片,进行了如下的操作: 操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE. (1)如果AC=6cm,BC=8cm,可求得△ACD的周长为; (2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为; 操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.