某中学为了了解本校学生喜爱的球类运动,在本校范围内随机调查了部分学生,将收集的数据绘制成如下两幅不完整的统计图.请你根据图中提供的信息解答下列问题:
(1)本次一共调查了多少名学生?
(2)补全条形统计图;
(3)求“足球”在扇形统计图中所占圆心角的度数;
(4)若已知该校有500名学生,请你根据调查的结果估计爱好“足球”和“排球”的学生共有多少人?
如图,已知A、B是线段MN上的两点,,,.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设. (1)求的取值范围; (2)若△ABC为直角三角形,求的值.
已知:如图,P为等边△ABC内一点,∠APB=113°,∠APC=123°,试说明:以AP、BP、CP为边长可以构成一个三角形,并确定所构成三角形的各内角的度数.
已知:如图,在△ABC中,∠BAC=1200,以BC为边向形外作等边三角形△BCD,把△ABD绕着点D按顺时针方向旋转600后得到△ECD,若AB=3,AC=2,求∠BAD的度数与AD的长.
某商品进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元. (1)求y与x的函数关系式并直接写出自变量x的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
如图,直线l经过A(3,0),B(0,3)两点与二次函数y=x2+1的图象在第一象限内相交于点C. (1)求△AOC的面积; (2)求二次函数图象的顶点D与点B,C构成的三角形的面积.