如图,一次函数的图象与x轴、y轴分别相交于点A、B.P是射线BO上的一个动点(点P不与点B重合),过点P作PC⊥AB,垂足为C,在射线CA上截取CD=CP,连接PD.设BP=t.(1)t为何值时,点D恰好与点A重合?(2)设△PCD与△AOB重叠部分的面积为S,求S与t的函数关系式,并直接写出t的取值范围.
从地面竖直向上抛出一个小球,小球的高度h(米)与运动时间t(秒)之间的关系式为,那么小球抛出秒后达到最高点.
如图,在平面直角坐标系中,直线l的表达式是y=-x+1,长度为2的线段AB在y轴上移动,设点A的坐标为(0,a). (1)当以A为圆心,AB为半径的圆与直线l相切时,求a的值; (2)直线l上若存在点C,使得△ABC是以AB为腰的等腰三角形,则a的取值范围为 ; (3)直线l上是否存在点C,使得∠ACB=90°?若存在,求出a的取值范围;若不存在,请说明理由.
要建一个面积为150m2的长方形养鸡场,为了节省材料,养鸡场的一边靠着原有的一条墙,墙长am,另三边用竹篱笆围成.如果篱笆的总长为40m,设养鸡场垂直于墙的一边长为xm,求养鸡场的长和宽.
某课题小组研究如下的几个问题.(1)边长为1的等边三角形从图1位置开始沿直线顺时针无滑动地向右滚动一周,求点P运动的路径长(直接列式计算);(2)边长为1的正方形从图2位置开始沿直线顺时针无滑动地向右滚动,当正方形滚动一周时,求点P运动的路经长(直接列式计算).(3)请你将(1)(2)中的正多边形化成一个边长为1,边数大于4的正多边形,按(1)(2)的方式滚动一周,求其任意一个顶点运动的路径长(请写出你选的图形的名称,直接写出结果)
某水产店每天购进一种高档海鲜500千克,预计每千克盈利10元,当天可全部售完,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.当天剩余的海鲜全部以每千克盈利5元的价格卖给某饭店,如果该水产店要保证当天盈利6500元,那么每千克应涨价多少元?