如图,一次函数的图象与x轴、y轴分别相交于点A、B.P是射线BO上的一个动点(点P不与点B重合),过点P作PC⊥AB,垂足为C,在射线CA上截取CD=CP,连接PD.设BP=t.(1)t为何值时,点D恰好与点A重合?(2)设△PCD与△AOB重叠部分的面积为S,求S与t的函数关系式,并直接写出t的取值范围.
已知:AB是⊙O的直径,弦CD⊥AB于点G,E是直线AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF交直线AB于点P.设⊙O的半径为r. (1)如图1,当点E在直径AB上时,试证明:OE•OP=; (2)当点E在AB(或BA)的延长线上时,以如图2点E的位置为例,请你画出符合题意的图形,标注上字母,(1)中的结论是否成立?请说明理由.
(1)解方程: (2)x,y表示两个数,规定新运算“*”及“”如下:x*y=mx+ny,x△y=kxy,其中m,n,k均为自然数(零除外),已知1*2=5,(2*3)△4=64,求(1△2)*3的值.
如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系: (1)①请直接写出图1中线段BG、线段DE的数量关系及所在直线的位置关系; ②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断. (2)将原题中正方形改为矩形(如图4~6),且,试判断(1)①中得到的结论哪个成立,哪个不成立?(写出你的判断,不必证明.) (3)在图5中,连结DG、BE,且,则 .
阅读材料:已知方程且,求的值. 解:由,及可知,又∵,∴. ∵可变形为,根据和的特征. ∴是方程的两个不相等的实数根,则,即. 根据阅读材料所提供的方法,完成下面的解答. 已知:,且,求下列各式的值(1);(2).
定义:如图,若双曲线与它的其中一条对称轴相交于两点A,B,则线段AB的长称为双曲线的对径. (1)求双曲线的对径; (2)若某双曲线对径是.求k的值; (3)仿照上述定义,请你定义双曲线的对径.