如图,已知抛物线经过A(-3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标; 若不存在,请说明理由.
(·辽宁大连)如图,在平面坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线y=经过点B.将△AOB绕点B逆时针旋转,使点O的对应点D落在X轴的正半轴上.若AB的对应线段CB恰好经过点O. (1)点B的坐标和双曲线的解析式. (2)判断点C是否在双曲线上,并说明理由.
(·黑龙江绥化)如图 ,已知抛物线y=ax2+bx+c与x轴交于点A、B ,与直线AC:y=-x-6交y轴于点C、D,点D是抛物线的顶点 ,且横坐标为-2. (1)求出抛物线的解析式。 (2)判断△ACD的形状,并说明理由。 (3)直线AD交y轴于点F ,在线段AD上是否存在一点P ,使∠ADC=∠PCF .若存在 ,直接写出点P的坐标;若不存在,说明理由。
(·辽宁沈阳)如图,在▱ABCD中,AB=6,BC=4,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将▱ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G. (1)当点H与点C重合时. ①填空:点E到CD的距离是 ; ②求证:△BCE≌△GCF; ③求△CEF的面积; (2)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M,请直接写出△MEF的面积.
(·辽宁丹东)在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN90°. (1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系; (2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°). ①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由; ②如图2,在旋转过程中,当∠DOM15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长; ③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD3BP时,猜想此时PE与PF的数量关系,并给出证明;当BDm·BP时,请直接写出PE与PF的数量关系.
(·辽宁丹东)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度). (1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称; (2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.