如图,二次函数的图象与x轴交于点A(﹣3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.(1)请直接写出点D的坐标: ;(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.
观察下列等式,,,以上三个等式两边分别相加得: (1)猜想并写出:=﹣ ; (2)计算:= ; (3)探究并计算:= ; (4)若|ab﹣3|与|b﹣1|互为相反数,求:+++…+的值.
某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元. (1)试用含a的代数式填空: ①涨价后,每个台灯的销售价为 元; ②涨价后,每个台灯的利润为 元; ③涨价后,商场的台灯平均每月的销售量为 台. (2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.
一只蚂蚁从某点M出发,在一条直线上来回爬行,把它向右爬行的路程记为正数,向左爬行的路程记为负数,则它爬过的各段路程依次为:﹣3cm,+10cm,﹣8cm,+5cm,﹣6cm,+12cm,﹣12cm. (1)问这只蚂蚁最后停止位置在出发点M的左侧,还是右侧,距离多远? (2)蚂蚁在爬行过程中,如果每爬行2cm获得1粒芝麻,那么最后它共得到多少粒芝麻?
2015秋•成都校级月考)用⊗定义一种新运算:a⊕b=(a+b)﹣(a﹣b),比如:5⊕4=(5+4)﹣(5﹣4)=8 (1)求:2⊕(﹣3); (2)求:(3⊕4)⊕5.
若|a|=8,|b|=5,且a+b>0,求:a﹣b的值.