如图,已知⊙O上A、B、C三点,∠BAC=30°,D是OB延长线上的点,∠BDC=30°,⊙O半径为.(1)求证:DC是⊙O的切线;(2)如果AC∥BD,证明四边形ACDB是平行四边形,并求其周长.
阅读下面材料:小明观察一个由正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1.他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值.请回答:(1)如图1,A、B、C是点阵中的三个点,请在点阵中找到点D,作出线段CD,使得CD⊥AB;(2)如图2,线段AB与CD交于点O.为了求出的正切值,小明在点阵中找到了点E,连接AE,恰好满足于F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明计算:OC=_______________;=_______________;
如图,四边形ABCD是平行四边形,点A,B,C在⊙O上,AD与⊙O相切,射线AO交BC于点E,交⊙O于点F.点P在射线AO上,且∠PCB=2∠BAF.(1)求证:直线PC是⊙O的切线;(2)若AB=,AD=2,求线段PC的长.
某工厂生产的某种产品按质量分为10个档次,据调研显示,每个档次的日产量及相应的单件利润如下表所示(其中x为正整数,且1≤x≤10):为了便于调控,此工厂每天只生产一个档次的产品.当生产质量档次为x的产品时,当天的利润为y万元.(1)求y关于x的函数关系式;(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.
已知关于x的一元二次方程有两个不相等的实数根,.(1)求m的取值范围;(2)若,且,求整数m的值.
如图,△ABC中,∠ACB=90°,sinA=, BC=8,D是AB中点,过点B作直线CD的垂线,垂足为E.(1)求线段CD的长;(2)求的值.