如图,与交于点,,,,求证:.
(1)如图1,将∠EAF绕着正方形ABCD的顶点A顺时针旋转,∠EAF的两边交BC于E,交CD于F,连接EF.若∠EAF=45°,BE、DF的长度是方程的两根,请直接写出EF的长;(2)如图2,将∠EAF绕着四边形ABCD的顶点A顺时针旋转,∠EAF的两边交CB的延长线于E,交DC的延长线于F,连接EF.若AB=AD,∠ABC与∠ADC互补,∠EAF=∠BAD,请直接写出EF与DF、BE之间的数量关系,并证明你的结论; (3)在(2)的前提下,若BC=4,DC=7,CF=2,求△CEF的周长.(1)EF的长为: ;(2)数量关系: ;证明:
有一块直角三角形纸片,两直角边AC = 6cm,BC = 8cm.①如图1,现将纸片沿直线AD折叠,使直角边AC落在斜边AB上,则CD =" _________" cm.②如图2,若将直角∠C沿MN折叠,点C与AB中点H重合,点M、N分别在AC、BC上,则、与之间有怎样的数量关系?并证明你的结论.
已知关于x的一元二次方程 .(1)证明:不论m取何值时,方程总有两个不相等的实数根;(2)若,设方程的两个实数根分别为,(其中>),若y是关于m的函数,且,求y与m的函数解析式.
根据题意作出图形,并回答相关问题:(1)现有5个边长为1的正方形,排列形式如图1,请在图1中用分割线把它们分割后标上序号,重新在图2中拼接成一个正方形.(标上相应的序号)(2)在△ABC中,AC=BC=2,∠ACB=90°,D是BC边上的中点,E是AB边上一动点,在右图中作出点E,使EC+ED的值最小 (不写作法,保留作图痕迹), 此时EC+ED的值是________.
列方程解应用题: 某公司一月份营业额为10万元,第一季度总营业额为33.1万元,求该公司二、三月份营业额的平均增长率是多少?