如图1,已知(x>)图象上一点P,PA⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q,连结AQ,取AQ的中点为C.(1)如图2,连结BP,求△PAB的面积;(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为,求此时P点的坐标;(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.
计算:.
解一元二次方程: .
( )-1-∣-2∣+2sin30º +()º
计算:
如图① ,在△ABC中,AB=AC=4,∠BAC=90o,AD⊥BC,垂足为D. (1)S△ABD =.(直接写出结果) (2)如图②,将△ABD绕点D按顺时针方向旋转得到△A′B′D,设旋转角为(),在旋转过程中: 探究一:四边形APDQ的面积是否随旋转而变化?说明理由 探究二:当的度数为多少时,四边形APDQ是正方形?说明理由.