在Rt△ABC,∠C=90°,D为AB边上一点,点M、N分别在BC、AC边上,且DM⊥DN.作MF⊥AB于点F,NE⊥AB于点E.(1)特殊验证:如图1,若AC=BC,且D为AB中点,求证:DM=DN,AE=DF;(2)拓展探究:若AC≠BC.①如图2,若D为AB中点,(1)中的两个结论有一个仍成立,请指出并加以证明;②如图3,若BD=kAD,条件中“点M在BC边上”改为“点M在线段CB的延长线上”,其它条件不变,请探究AE与DF的数量关系并加以证明.
某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨: 定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形. 结论:在探讨过程中,有三位同学得出如下结果: 甲同学:在钝角、直角、不等边锐角三角形中分别存在____个、________个、________个大小不同的内接正方形. 乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大. 丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小. 任务:(1)填充甲同学结论中的数据; (2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明; (3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明 (如图,设锐角△ABC的三条边分别为不妨设,三条边上的对应高分别为,内接正方形的边长分别为.若你对本小题证明有困难,可直接用“”这个结论,但在证明正确的情况下扣1分).
已知:抛物线的顶点为A,与x轴的交点为B,C(点B 在点C的左侧). (1)直接写出抛物线对称轴方程; (2)若抛物线经过原点,且△ABC为直角三角形,求a,b的值; (3)若D为抛物线对称轴上一点,则以A,B,C,D为顶点的四边形能否为正方形?若能,请写出a,b满足的关系式;若不能,说明理由.
小明家需要用钢管做防盗窗,按设计要求需要用同种规格、每根长6米的钢管切 割成长0.8m的钢管及长2.5m的钢管.﹙余料作废﹚ (1)现切割一根长6m的钢管,且使余料最少.问能切出长0.8米及2.5米的钢管各多少根? (2)现需要切割出长0.8米的钢管89根,2.5米的钢管24根.你能用23根长6m的钢管完成切割吗?若能,请直接写出切割方案;若不能,请说明理由.
如图,将△ABC的顶点A放在⊙O上,现从AC与⊙O相切于点A(如图1)的 位置开始,将△ABC绕着点A顺时针旋转,设旋转角为(0°<<120°),旋转后AC,AB 分别与⊙O交于点E,F,连接EF(如图2). 已知∠BAC=60°,∠C=90°,AC=8,⊙O的直 径为8. (1)在旋转过程中,有以下几个量:①弦EF的长②弧EF的长③∠AFE的度数④点O到EF的距离.其中不变的量是(填序号); (2)当BC与⊙O相切时,请直接写出的值,并求此时△AEF的面积.
某教室的开关控制板上有四个外形完全相同的开关,其中两个分别控制A、B两 盏电灯,另两个分别控制C、D两个吊扇.已知电灯、吊扇均正常,且处于不工作状态,开 关与电灯、电扇的对应关系未知. (1)若四个开关均正常,则任意按下一个开关,正好一盏灯亮的概率是多少? (2)若其中一个控制电灯的开关坏了,则任意按下两个开关,正好一盏灯亮和一个扇转的概率是多少?请用树状图法或列表法加以说明