已知抛物线 ,直线 , 的对称轴与 交于点 ,点 与 的顶点 的距离是4.
(1)求 的解析式;
(2)若 随着 的增大而增大,且 与 都经过 轴上的同一点,求 的解析式.
在平面直角坐标系xOy中,直线与y轴交于点A.(1)如图,直线与直线交于点B,与y轴交于点C,点B横坐标为.①求点B的坐标及k的值;②直线与直线与y轴所围成的△ABC的面积等于 ;(2)直线与x轴交于点E(,0),若,求k的取值范围.
在一只不透明的布袋中装有红球、黄球各若干个,这些球除颜色外都相同,均匀摇匀.(1)若布袋中有3个红球,1个黄球.从布袋中一次摸出2个球,计算“摸出的球恰是一红一黄”的概率(用“画树状图”或“列表”的方法写出计算过程);(2)若布袋中有3个红球,x个黄球.请写出一个x的值 ,使得事件“从布袋中一次摸出4个球,都是黄球”是不可能的事件;(3)若布袋中有3个红球,4个黄球.我们知道:“从袋中一次摸出4个球,至少有一个黄球”为必然事件.请你仿照这个表述,设计一个必然事件: .
为了了解“通话时长”(“通话时长”指每次通话时间)的分布情况,小强收集了他家1000个“通话时长”数据,这些数据均不超过18(分钟).他从中随机抽取了若干个数据作为样本,统计结果如下表,并绘制了不完整的频数分布直方图.
根据表、图提供的信息,解答下面的问题:(1)a= ,样本容量是 ;(2)求样本中“通话时长”不超过9分钟的频率: ;(3)请估计小强家这1000次通话中“通话时长”超过15分钟的次数.
如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.
化简:.