一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;(Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.
设函数给出下列四个论断:① 它的周期为;② 它的图象关于直线对称;③它的图象关于点对称;④在区间上是增函数。 请以其中两个论断为条件,另两个为结论,写出一个正确的命题: .(用符号表示)
已知椭圆过点,且离心率。 (Ⅰ)求椭圆方程; (Ⅱ)若直线与椭圆交于不同的两点、,且线段 的垂直平分线过定点,求的取值范围。
(12分)某银行准备新设一种定期存款业务,经预测,存款量与存款利率的平方成正比,比例系数为,且知当利率为0.012时,存款量为1.44亿;又贷款的利率为时,银行吸收的存款能全部放贷出去;若设存款的利率为,;试写出存款量f(x)与存款利率的关系式,且当为多少时,银行可获得最大收益?
(12分)已知,,且,求:⑴·及;⑵若的最小值为-,求实数的值.
的三内角所对边的长分别为,已知,(1)已知函数,、是方程的两根,求的外接圆的半径.(2)若,求的最大值;(3)若,求的周长的最小值.