已知向量,设函数.求的最小正周期与单调递增区间;在中,分别是角的对边,若,,的面积为,求的值.
已知函数上是增函数.(I)求实数a的取值范围; (II)在(I)的结论下,设,求函数的最小值.
如图,已知直线的右焦点F,且交椭圆C于A,B两点,点A,F,B在直线上的射影依次为点D,K,E. (1)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程; (2)对于(1)中的椭圆C,若直线L交y轴于点M,且,当m变化时,求的值; (3)连接AE,BD,试探索当m变化时,直线AE、BD是否相交于一定点N?若交于定点N,请求出N点的坐标并给予证明;否则说明理由.
如图,已知两个正方形ABCD 和DCEF不在同一平面内,M,N分别为AB,DF的中点。(1)若平面ABCD ⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值;(2)用反证法证明:直线ME 与 BN 是两条异面直线
已知向量且A、B、C分别为△ABC的三边a、b、c所对的角 (1)求角C的大小;(2)若,求c边的长。
分别写在六张卡片上,放在一盒子中。 (1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.