下表是关于某设备的使用年限(年)和所需要的维修费用y (万元)的几组统计数据:
(1) 请在给出的坐标系中画出上表数据的散点图;(2)请根据散点图,判断y与x之间是否有较强线性相关性,若有求线性回归直线方程;(3)估计使用年限为10年时,维修费用为多少?(参考数值:)参考公式: ; ;
已知曲线E上的点到直线的距离比到点F(0,1)的距离大1 (1)求曲线E的方程; (2)若过M(1,4)作曲线E的弦AB,使弦AB以M为中点,求弦AB所在直线的方程. (3)若直线与曲线E相切于点P,求以点P为圆心,且与曲线E的准线相切的圆的方程.
如图,在长方体中,,点在棱AB上移动. (1)证明:; (2)若,求二面角的大小。
(本小题满分14分)设函数f(x)=ln x+在(e,+∞)内有极值. (Ⅰ)求实数a的取值范围; (Ⅱ)记g(x)=f(x)+,判断g(x)的导函数g'(x)在定义域内的单调性; (Ⅲ)若k<f(x)+对任意x>1恒成立,求整数k的最大值
(本小题满分13分)已知椭圆过点,且与抛物线有一个公共的焦点. (Ⅰ)求椭圆方程; (Ⅱ)过椭圆的右焦点且斜率为的直线与椭圆交于两点,求弦的长; (Ⅲ)以第(Ⅱ)题中的为边作一个等边三角形,求点的坐标.
(本小题满分12分)等差数列中,,其前项和为.等比数列的各项均为正数,,且,. (Ⅰ)求数列与的通项公式; (Ⅱ)求数列的前项和.