已知椭圆C:的离心率等于,点P在椭圆上。(1)求椭圆的方程;(2)设椭圆的左右顶点分别为,过点的动直线与椭圆相交于两点,是否存在定直线:,使得与的交点总在直线上?若存在,求出一个满足条件的值;若不存在,说明理由.
定义F(x,y)=(1+x)y,x,y∈(0,+∞).令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),设曲线C1在点A,B之间的曲线段与线段OA,OB所围成图形的面积为S,求S的值.
求由抛物线y2=x-1与其在点(2,1),(2,-1)处的切线所围成的面积.
已知函数f(x)=x3-x2+ax-a(a∈R). (1)当a=-3时,求函数f(x)的极值. (2)若函数f(x)的图象与x轴有且只有一个交点,求a的取值范围.
某工厂生产某种产品,每日的成本C(单位:元)与日产量x(单位:吨)满足函数关系式C=10000+20x,每日的销售额R(单位:元)与日产量x满足函数关系式R= 已知每日的利润y=R-C,且当x=30时,y=-100. (1)求a的值. (2)求当日产量为多少吨时,每日的利润可以达到最大,并求出最大值.
已知函数f(x)=x3-3x. (1)求函数f(x)的单调区间. (2)求函数f(x)在区间[-3,2]上的最值.