(本小题满分14分)已知数列的首项,,….(1)证明:数列是等比数列; (2)求数列的前项和.
已知是等比数列的前项和,,,成等差数列,且. (Ⅰ)求数列的通项公式; (Ⅱ)是否存在正整数,使得?若存在,求出符合条件的所有的集合;若不存在,说明理由.
某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求: (1)仓库顶部面积的最大允许值是多少? (2)为使达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?
在△ABC中,已知A=,. (Ⅰ)求cosC的值; (Ⅱ)若BC=2,D为AB的中点,求CD的长.
已知全集U=R,非空集合<,<. (1)当时,求; (2)命题,命题,若q是p的必要条件,求实数的取值范围.
已知圆心为的圆方程为,点是直线上的一动点,过点作圆的切线,切点为. (1)当切线的长度为时,求点的坐标; (2)若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由. (3)求线段长度的最小值.