已知,设命题:函数在区间上与轴有两个不同的交点;命题:在区间上有最小值.若是真命题,求实数的取值范围.
(本小题满分12分)已知函数(Ⅰ)求函数的对称中心;(Ⅱ)已知△ABC内角的对边分别为,且,,,求
(本小题满分14分)已知椭圆的右焦点为,且点在椭圆上,为坐标原点.(Ⅰ)求椭圆的标准方程;(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且为锐角,求直线的斜率的取值范围;(Ⅲ)过椭圆上异于其顶点的任一点,作圆的两条切线,切点分别为(不在坐标轴上),若直线在轴、轴上的截距分别为、,证明:为定值.
(本小题满分13分)设函数,,函数的图象与轴的交点在函数的图象上,且在此点处两曲线有相同的切线.(Ⅰ) 求、的值;(Ⅱ) 设定义在上的函数的最大值为,最小值为,且,求实数的取值范围.
(本小题满分12分)已知数列是等比数列,首项,公比,其前项和为,且,,成等差数列.(1)求数列的通项公式;(2)若数列满足,为数列的前项和,若恒成立,求的最大值.
(本小题满分12分)如图所示,已知在四棱锥中, ∥,,,且(1)求证:平面;(2)试在线段上找一点,使∥平面, 并说明理由;(3)若点是由(2)中确定的,且,求四面体的体积.