已知函数,其中为大于零的常数,,函数的图像与坐标轴交点处的切线为,函数的图像与直线交点处的切线为,且.(I)若在闭区间上存在使不等式成立,求实数的取值范围;(II)对于函数和公共定义域内的任意实数,我们把的值称为两函数在处的偏差.求证:函数和在其公共定义域内的所有偏差都大于2.
用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用一个单位的水可洗掉蔬菜上残留农药的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数. ⑴试规定的值,并解释其实际意义; ⑵试根据假定写出函数应满足的条件和具有的性质; ⑶设,现有单位量的水,可以清洗一次,也可以把水平均分成两份后清洗两次.试问用那种方案清洗后蔬菜上残留的农药量比较少?说明理由.
已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值.
(1)化简; (2)已知且,求的值.
在△ABC中,角A,B,C所对边分别为a,b,c,且. (Ⅰ)求角A; (Ⅱ)若m,n,试求|mn|的最小值.
已知等差数列满足:,的前项和为。 (1)求及; (2)令(其中为常数,且),求证数列为等比数列。