如图,在平面直角坐标系中,椭圆的右焦点为,离心率为.分别过,的两条弦,相交于点(异于,两点),且.(1)求椭圆的方程;(2)求证:直线,的斜率之和为定值.
已知数列的前项和为,通项公式为,.(Ⅰ)计算的值;(Ⅱ)比较与1的大小,并用数学归纳法证明你的结论.
设曲线≥0)在点M(t, )处的切线与x轴y轴所围成的三角形面积为,求的解析式.
求函数()与函数的图像所围成的封闭区域的面积.
已知分别以为公差的等差数列,,满足.(Ⅰ)若,且存在正整数,使得,求的最小值;(Ⅱ)若,且数列,的前项和满足,求 的通项公式.
在中,的对边分别为,向量,. (Ⅰ)若向量,求满足的角的值;(Ⅱ)若,试用角表示角与;(Ⅲ)若,且,求的值.