一工厂要将100吨货物运往外地,计划租用某运输公司甲、乙两种型号的汽车共6辆一次将货物全部运动,已知每辆甲型汽车最多能装该种货物16吨,租金800元,每辆乙型汽车最多能装该种货物18吨,租金850元,若此工厂计划此次租车费用不超过5000元,通过计算求出该公司共有几种租车方案?请你设计出来,并求出最低的租车费用。
如图,已知一条直线过点,且与抛物线交于A,B两点,其中点A的横坐标是.(1)求这条直线的函数关系式及点B的坐标;(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标;若不存在,请说明理由;(3) 过线段AB上一点P,作PM //x轴,交抛物线于点M,点M在第一象限,点N,当点M的横坐标为何值时,的长度最大?最大值是多少?
在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,若小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△与△面积之和的最大值,并简要说明理由.
如图,在△ABC中,,,D为AC延长线上一点,.过点D作//,交的延长线于点H.(1)求的值;(2)若,求AB的长.
已知如图,在平面直角坐标系中,直线与轴、轴分别交于A,B两点,P是直线AB上一动点,⊙的半径为1.(1)判断原点O与⊙的位置关系,并说明理由;(2)当⊙过点B时,求⊙被轴所截得的劣弧的长;(3)当⊙与轴相切时,求出切点的坐标.
在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票原定的票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.