在如图所示的几何体中,四边形是正方形,⊥平面,∥,、、分别为、、的中点,且.(1)求证:平面⊥平面;(2)求三棱锥与四棱锥的体积之比.
已知椭圆E的两个焦点分别为和,离心率. (1)求椭圆E的方程; (2)设直线与椭圆E交于A、B两点,线段AB的垂直平分线交x轴于点T,当m变化时,求△TAB面积的最大值.
如图,底面是正三角形的直三棱柱中,D是BC的中点,. (Ⅰ)求证:平面; (Ⅱ)求的A1 到平面的距离.
在中,已知内角,边.设内角,面积为y. (1)若,求边AC的长; (2)求y的最大值.
已知函数. (1)求的最小正周期; (2)已知,求的值.
已知等差数列的前n项和,且, (1)求数列的通项公式; (2)设,求数列的前n项和.