如图,椭圆=1(a>b>0)的上,下两个顶点为A,B,直线l:y=-2,点P是椭圆上异于点A,B的任意一点,连接AP并延长交直线l于点N,连接PB并延长交直线l于点M,设AP所在的直线的斜率为k1,BP所在的直线的斜率为k2.若椭圆的离心率为,且过点A(0,1).(1)求k1·k2的值;(2)求MN的最小值;(3)随着点P的变化,以MN为直径的圆是否恒过定点?若过定点,求出该定点;如不过定点,请说明理由.
(本题满分13分)已知函数在上是减函数,在上是增函数,函数在上有三个零点.(1)求的值; (2)若1是其中一个零点,求的取值范围;(3)若,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由。
(本题满分13分)对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “M类数列”.(1)若,,,数列、是否为“M类数列”?若是,指出它对应的实常数,若不是,请说明理由;(2)证明:若数列是“M类数列”,则数列也是“M类数列”;(3)若数列满足,,为常数.求数列前项的和.
(本小题满分13分)运货车以每小时x千米的速度匀速行驶130千米(60≤x≤100),假设汽油的价格是每升2元,而汽车每小时耗油升,付给司机的工资是每小时14元。(1) 求这次行车总费用y关于x的表达式(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值。
(本小题满分13分)已知等差数列的前项和为,且,(1)求数列的通项公式;(2)若数列满足,求数列的前项和
在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足。(Ⅰ)求角C的大小;(Ⅱ)求的最大值。