如图,椭圆=1(a>b>0)的上,下两个顶点为A,B,直线l:y=-2,点P是椭圆上异于点A,B的任意一点,连接AP并延长交直线l于点N,连接PB并延长交直线l于点M,设AP所在的直线的斜率为k1,BP所在的直线的斜率为k2.若椭圆的离心率为,且过点A(0,1).(1)求k1·k2的值;(2)求MN的最小值;(3)随着点P的变化,以MN为直径的圆是否恒过定点?若过定点,求出该定点;如不过定点,请说明理由.
已知函数,试判断此函数在上的单调性,并求此函数 在上的最大值和最小值.
已知命题p:方程有两个不等的负实根,命题q:方程 无实根.若p或q为真,p且q为假,求实数的取值范围.
已知函数. (1)若,解不等式; (2)若,,求实数的取值范围.
已知圆的参数方程为(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆的极坐标方程为. (1)将圆的参数方程化为普通方程,将圆的极坐标方程化为直角坐标方程; (2)圆,是否相交?若相交,请求出公共弦长,若不相交,请说明理由.
如图,已知与圆相切于点,直径 ,连结交于点. (1)求证:; (2)求证:.