如图,在四棱锥PABCD中,PA⊥底面ABCD,PC⊥AD,底面ABCD为梯形,AB∥DC,AB⊥BC,PA=AB=BC,点E在棱PB上,且PE=2EB.(1)求证:平面PAB⊥平面PCB;(2)求证:PD∥平面EAC.
(本小题满分12分) 如图,四棱锥的底面是正方形,⊥平面,,点E 是SD上的点,且. (1)求证:对任意的,都有AC⊥BE; (2)若二面角C-AE-D的大小为,求的值.
(本小题满分12分)求与轴相切,圆心在直线上,且被直线截得的弦长为的圆的方程。
(本小题满分12分) 求经过点,且满足下列条件的直线方程: (1)倾斜角的正弦为;(2)与两坐标轴的正半轴围成的三角形面积为4。
(本小题共12分) 如图,已知四棱锥中,底面,四边形是直角梯形,,,, (1)证明:; (2)在线段上找出一点,使平面, 指出点的位置并加以证明;
(本小题共12分) 如图,在直三棱柱中,,点是的中点, (1)求证:平面; (2)求证:平面