如图,OABC是一个放在平面直角坐标系中的矩形,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=3,OC=4,平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线运动的时间为t(秒).(1)写出点B的坐标;(2)t为何值时,MN=AC;(3)设△OMN的面积为S,求S与t的函数关系式,并写出t的取值范围;当t为何值时,S有最大值?并求S的最大值.
如图所示△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB上一点. (1)求证:△ACE≌△BCD; (2)若AD=5,BD=12,求DE的长.
端午节吃粽子是中华民族的传统习俗,一超市为了吸引消费者,增加销售量特设计了一个游戏,其规则是:分别转动如图所示的两个可以自由转动的转盘各一次,每次指针落在每一字母区域的机会均等(若指针恰好落在分界线上重转),当两个转盘的指针所指字母都相同时,消费者就可以获得一次八折优惠价购买粽子的机会. (1)用树状图或列表的方法(只选其中一种)表示出游戏可能出现的所有结果; (2)若一名消费者只能参加一次游戏,则他能获得八折优惠价购买粽子的概率是多少?
如图所示,某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是高6米的小区超市,超市以上是居民住房,在该楼的前面16米处要盖一栋高20米的新楼,在冬至日清晨阳光的照射下,1米高的小树的影子长为1.6米. (1)问超市以上的居民住房采光是否受到影响?为什么? (2)若要使超市以上的居民住房采光不受影响,两楼应相距多少米?
如图,在平面直角坐标中,△ABC的三个顶点分别为A(―2,―1),B(―1,1)C(0,―2). (1)点B关于坐标原点O对称的点的坐标为 ; (2)将△ABC绕点C顺时针旋转90°,画出旋转后得到的△A1B1C; (3)求过点B1的反比例函数的解析式.
如图:一次函数的图象与反比例函数的图象交于A(-2,6)和点B(4,n) (1)求反比例函数的解析式和B点坐标 (2)根据图象回答,在什么范围时,一次函数的值大于反比例函数的值.