如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数的图象与y轴的交点,点B在二次函数的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.(1)试求b,c的值,并写出该二次函数表达式;(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:①当P运动到何处时,有PQ⊥AC?②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?
如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.证明:AE2+CF2的值是一个常数.
某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A,B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元.每个羽毛球的标价均为3元,目前两家超市同时在做促销活动: A超市:所有商品均打九折(按标价的90%)销售; B超市:买一副羽毛球拍送2个羽毛球. 设在A超市购买羽毛球拍和羽毛球的费用为yA元,在B超市购买羽毛球拍和羽毛球的费用为yB元.请解答下列问题: (1)分别写出yA和yB与x之间的关系式; (2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算? (3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.
某商场统计了每个营业员在某月的销售额,统计图如图所示: 请根据以上统计图解答下列问题: (1)设营业员的月销售额为x(万元),商场规定:当x<15时,为不称职,当15≤x<20时,为基本称职,当20≤x<25时,为称职,当x≥25时,为优秀,试求出称职和优秀的营业员人数所占百分比各是多少; (2)根据(1)中规定,所有称职以上的营业员月销售额的中位数、众数和平均数各是多少?(保留整数) (3)为了调动营业员的工作积极性,决定制定月销售额奖励标准,凡达到或超过这个标准的营业员将受到奖励,如果要使得优秀的和一半称职的营业员能获奖,你认为这个奖励标准应定为多少万元合适?并简述理由.
学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示,已知每个菱形的边长为cm,其中一个内角为60°. (1)若d=25,则该纹饰要205个菱形图案,求纹饰的长度L; (2)当d=20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案?
如图,已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC. (1)证明ABDF是平行四边形; (2)若AF=DF=5,AD=6,求AC的长.