一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图像如下图所示:(1)根据图像,直接写出y1、y2关于x的函数关系式;(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.
(本题8分)小明上午7:05从家里出发以均匀的速度步行上学,途经少年宫时走了步,用时10分钟,7:30到达学校.为了估测路程等有关数据,小明特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1) 小明上学步行的平均速度是 ▲ 米/分;小明家和少年宫之间的路程是 ▲ 米;少年宫和学校之间的路程是 ▲ 米.(2) 下午4:00,小明从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:① 小明到家的时间是下午几时?② 小明回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.
(本题6分) 已知:如图,在△ABC中, D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.
(本题6分)求不等式组的整数解.
P点为抛物线(为常数,)上任一点,将抛物线绕顶点逆时针旋转后得到的新图象与轴交于、两点(点在点的上方),点为点旋转后的对应点.(1)当,点横坐标为4时,求点的坐标;(2)设点,用含、的代数式表示;(3) 如图,点在第一象限内, 点在轴的正半轴上,点为的中点,平分,,当时,求的值.
有六个学生分成甲、乙两组(每组三个人),分乘两辆出租车同时从学校出发去距学校60km的博物馆参观,10分钟后到达距离学校12km处有一辆汽车出现故障,接着正常行驶的一辆车先把第一批学生送到博物馆再回头接第二批学生,同时第二批学生步行12km后停下休息10分钟恰好与回头接他们的小汽车相遇,当第二批学生到达博物馆时,恰好已到原计划时间.设汽车载人速度、空载时的速度、学生步行速度分别是匀速的,汽车离开学校的路程s(千米)与汽车行驶时间t(分钟)之间的函数关系如图,假设学生上下车时间忽略不计.(1)原计划从学校出发到达博物馆的时间是 ▲ 分钟;(2)求汽车在回头接第二批学生途中的速度;(3)假设学生在步行途中不休息且步行速度每分钟减小0.04km,汽车载人时和空载时速度不变,问能否经过合理的安排,使得学生从学校出发全部到达目的地的时间比原计划时间早10分钟?如果能,请简要说出方案,并通过计算说明;如果不能,简要说明理由.