如图,在平面直角坐标系 x O y 中,直线 y = 1 2 x + 2 与 x 轴交于点 A ,与 y 轴交于点 C .抛物线 y = a x 2 + b x + c 的对称轴是 x = - 3 2 且经过 A 、 C 两点,与 x 轴的另一交点为点 B . (1)①直接写出点 B 的坐标;②求抛物线解析式. (2)若点 P 为直线 A C 上方的抛物线上的一点,连接 P A , P C .求 △ P A C 的面积的最大值,并求出此时点 P 的坐标. (3)抛物线上是否存在点 M ,过点 M 作 M N 垂直 x 轴于点 N ,使得以点 A 、 M 、 N 为顶点的三角形与 △ A B C 相似?若存在,求出点 M 的坐标;若不存在,请说明理由.
如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.
计算:-.
如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D. (1)求该抛物线的解析式与顶点D的坐标. (2)试判断△BCD的形状,并说明理由. (3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.
如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD. (1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论; ②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断. (2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.
为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元. (1)求w与x之间的函数关系式. (2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?