如图,在平面直角坐标系 x O y 中,直线 y = 1 2 x + 2 与 x 轴交于点 A ,与 y 轴交于点 C .抛物线 y = a x 2 + b x + c 的对称轴是 x = - 3 2 且经过 A 、 C 两点,与 x 轴的另一交点为点 B . (1)①直接写出点 B 的坐标;②求抛物线解析式. (2)若点 P 为直线 A C 上方的抛物线上的一点,连接 P A , P C .求 △ P A C 的面积的最大值,并求出此时点 P 的坐标. (3)抛物线上是否存在点 M ,过点 M 作 M N 垂直 x 轴于点 N ,使得以点 A 、 M 、 N 为顶点的三角形与 △ A B C 相似?若存在,求出点 M 的坐标;若不存在,请说明理由.
解方程组:(1)(2)
如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是 三角形;(2)如图,△OAB是抛物线的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由;(3)在(2)的条件下,若以点E为圆心,r为半径的圆与线段AD只有一个公共点,求出r的取值范围.
边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.(1)求边DA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.
已知关于的一元二次方程有实数根,为正整数.(1)求的值;(2)当此方程有两个不为0的整数根时,将关于的二次函数的图象向下平移2个单位,求平移后的函数图象的解析式;(3)在(2)的条件下,将平移后的二次函数图象位于轴左侧的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象G.当直线与图象G有3个公共点时,请你直接写出的取值范围.
阅读下列材料: 我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1) 下列哪个四边形一定是和谐四边形( )
(2)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD的和谐线,且AB="BC," 请直接写出∠ABC的度数.