如图,已知一次函数的图象与x轴交于点A,与二次函数的图象交于y轴上的一点B,二次函数的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数的解析式;(2)设一次函数的图象与二次函数的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.
如图,网格中每个小正方形的边长为1,请你认真观察图(1)的三个网格中阴影部分构成的图案,解答下列问题:这三个图案都具有以下共同特征:都是 ▲ 对称图形,面积都是 ▲ ;⑵ 请在图(2)中设计出2个具备上述特征而且不是轴对称图形的图案,要求所画图案不能与图(1)中给出的图案相同.
先化简再求值,,其中
两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:(1)如图1,△DEF沿线段AB向右平移(即D点在线段AB内移动) ,连结DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,四边形CDBF面积为 _______;(2)如图2,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)如图3,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连结AE,请你求出sin∠AED的值.
如图,已知点A (-2,4) 和点B (1,0)都在抛物线y=mx2+2mx+n上.(1)求m、n值;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形为菱形,求平移后抛物线的表达式;(3)试求出菱形的对称中心点M的坐标.
某学校组织知识竞赛,比赛奖项设一等奖1人,二等奖4人,三等奖5人.要求一等奖奖品单价比二等奖奖品单价位高15元,二等奖奖品单价比三等奖奖品单价高15元,设一等奖奖品单价为x元,购买奖品总金额为y元.(1)求y与x的函数表达式.(2)因学校活动经费有限,购买奖品的总金额应限制在500≤y≤600,在这种情况下,根据备选奖品表,购买奖品有几种方案?本着尽可能节约的原则,选出最佳方案,并求出这时全部奖品所需总金额是多少元?(备选奖品及单价表如下:)