已知等差数列满足:(1) 求数列的前20项的和; (2) 若数列满足:,求数列的前项和.
(本小题满分15分) 某企业有两个生产车间分别在A,B两个位置,A车间有100名员工,B车间有400名员工,现要在公路AC上找一点D,修一条公路BD,并在D处建一个食堂,使得所有员工均在此食堂用餐,已知A,B,C中任意两点间的距离均有1 km,设∠BDC=,所有员工从车间到食堂步行的总路程为S. (1)写出S关于的函数表达式,并指出的取值范围; (2)问食堂D建在距离A多远时,可使总路程S最少?
(本小题满分14分) 如图,四棱锥P-ABCD中,底面ABCD为菱形,且,侧面PAD是正三角形,其所在的平面垂直于底面ABCD,点G为AD的中点. (1)求证:BG面PAD; (2)E是BC的中点,在PC上求一点F,使得PG面DEF.
(本小题满分14分) 设已知,,其中. (1)若,且,求的值; (2)若,求的值.
.(本小题满分10分)选修4-5:不等式选讲 设函数. (Ⅰ)求不等式的解集; (Ⅱ)若,恒成立,求实数的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程 已知在直角坐标系中,圆锥曲线的参数方程为(为参数),定点,是圆锥曲线的左,右焦点. (Ⅰ)以原点为极点、轴正半轴为极轴建立极坐标系,求经过点且平行于直线的直线的极坐标方程; (Ⅱ)在(I)的条件下,设直线与圆锥曲线交于两点,求弦的长.