已知以原点 O 为中心, F ( 5 , 0 ) 为右焦点的双曲线 C 的离心率 e = 5 2 . (Ⅰ)求双曲线 C 的标准方程及其渐近线方程; (Ⅱ)如题图,已知过点 M ( x 1 , y 1 ) 的直线 l 1 : x 1 x + 4 y 1 y = 4 与过点 N ( x 2 , y 2 ) (其中 x 2 ≠ y 2 )的直线 l 2 : : x 2 x + 4 y 2 y = 4 的交点 E 在双曲线 C 上,直线 M N 与双曲线的两条渐近线分别交于 G 、 H 两点,求 O G ⇀ · O H ⇀ 的值.
(本小题满分10分)选修4—4:坐标系与参数方程 在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系.曲线的极坐 标方程是,直线的参数方程是. (1)求直线的直角坐标方程和曲线的参数方程; (2)求曲线上的动点到直线的距离的范围.
(本小题满分10分)选修4—1:几何证明选讲 如图,在直径的延长线上任取一点,过点做直线与交于点、,在上取一点,使,连接,交于. (1)求证:、、、四点共圆; (2)若,求的值.
(本小题满分12分)设函数. (1)若曲线在点处的切线与轴垂直,求的极值; (2)当时,若不等式在区间上有解,求实数的取值范围.
(本小题满分12分)已知椭圆的离心率,左、右焦点分别是,以原点为圆心,椭圆的短半轴为半径的圆与直线相切. (1)求椭圆的标准方程; (2)设为椭圆上不在轴上的一个动点,过点作的平行线交椭圆与两个不同的点,记,令,求的最大值.
(本小题满分12分)在三棱柱中,,,,与相交于点. (1)求证:平面; (2)求二面角的正弦值.