若椭圆C:的离心率e为, 且椭圆C的一个焦点与抛物线y2=-12x的焦点重合. (1) 求椭圆C的方程; (2) 设点M(2,0), 点Q是椭圆上一点, 当|MQ|最小时, 试求点Q的坐标; (3) 设P(m,0)为椭圆C长轴(含端点)上的一个动点, 过P点斜率为k的直线l交椭圆与 A,B两点, 若|PA|2+|PB|2的值仅依赖于k而与m无关, 求k的值.
正四棱锥中,,点M,N分别在PA,BD上,且. (Ⅰ)求异面直线MN与AD所成角; (Ⅱ)求证:∥平面PBC; (Ⅲ)求MN与平面PAB所成角的正弦值.
已知圆C的半径为2,圆心在x轴的正半轴上,直线与圆C相切. (I)求圆C的方程; (II)过点Q(0,-3)的直线与圆C交于不同的两点A、B,当时,求△AOB的面积.
已知向量,函数 (Ⅰ)求函数在上的值域; (Ⅱ)当时,若与共线,求的值.
已知数列中,,n≥2时,求通项公式.
已知向量与互相垂直,其中 (1)求和的值 (2)若,,求的值