((本题满分14分)某射手每次射击击中目标的概率是,且各次射击的结果互不影响。(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总得分数,求ξ的分布列.
已知三点,,.(1)求以,为焦点,且过点的椭圆方程;(2)设点,,关于直线的对称点分别为,,,求以,为焦点,且过点的双曲线方程.
用边长的正方形的铁皮做一个无盖水箱,先在四角分别截去相同的小正方形,然后把四边翻转再焊接而成.问水箱底边应取多少,才能使水箱的容积最大?
数列{an}中,.(Ⅰ)求;(Ⅱ)猜想的表达式,并用数学归纳法加以证明.
已知某射手射击一次,击中目标的概率是.(1)求连续射击5次,恰有3次击中目标的概率;(2)求连续射击5次,击中目标的次数X的数学期望和方差.(3)假设连续2次未击中目标,则中止其射击,求恰好射击5次后,被中止射击的概率.(本题结果用分数表示即可).
求3名男生和4名女生按下列要求排成一排的排法总数(结果用数字表示)(1)男生甲只排中间或两头; (2)所有女生排在一起(3)男生不相邻 (4)男生甲在女生乙的左边(可以不相邻)