已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴,垂足为T,与抛物线交于不同的两点P、Q且.(1)求点T的横坐标;(2)若以F1,F2为焦点的椭圆C过点.①求椭圆C的标准方程; ②过点F2作直线l与椭圆C交于A,B两点,求的取值范围.
如图,三棱锥中,底面,,,点、分别是、的中点. (Ⅰ)求证:⊥平面;(Ⅱ)求二面角的大小.
(本小题满分12分)在中,已知内角A、B、C所对的边分别为a、b、c,向量,,且。(I)求锐角B的大小;(II)如果,求的面积的最大值。
(本小题满分14分)已知递增数列满足:,,且、、成等比数列。(I)求数列的通项公式;(II)若数列满足:,且。①证明数列是等比数列,并求数列的通项公式;②设,数列前项和为,,。当时,试比较A与B的大小。
(本小题满分12分)已知函数(为实常数)(Ⅰ)若函数为奇函数,求此函数的单调区间;(Ⅱ)记,当,试讨论函数的图象与函数的图象的交点个数.