(本小题满分13分)已知椭圆的上、下焦点分别是M、N, 点P为坐标平面内的动点,满足,(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)在直线上是否存在点,过该点作曲线C的两条切线,切点分别为B、C,使得?若存在,求出该点坐标;若不存在,试说明理由.
(本题满分为15分)如图,焦点在轴的椭圆,离心率,且过点(-2,1),由椭圆上异于点的点发出的光线射到点处被直线反射后交椭圆于点(点与点不重合).(1)求椭圆标准方程;(2)求证:直线的斜率为定值;(3)求的面积的最大值.
(本题满分为15分)如图,已知长方形中,,为的中点.将 沿折起,使得平面平面. (1)求证: ; (2)若点是线段上的一动点,问点E在何位置时,二面角的余弦值为.
(本题满分为15分) 在等差数列中,,其前项和为,等比数列 的各项均为正数,,公比为,且, .(1)求与;(2)设数列满足,求的前项和.
中,三个内角A、B、C所对的边分别为、、,若,.(Ⅰ)求角的大小;(Ⅱ)已知的面积为,求函数的最大值.
(本小题满分14分)已知数列{}是首项为,公比的等比数列.设,数列{}满足.(Ⅰ)求数列{}的通项公式;(Ⅱ)求数列{}的前项和;(Ⅲ)若对一切正整数恒成立,求实数的取值范围.