(本题满分为15分)如图,焦点在轴的椭圆,离心率,且过点(-2,1),由椭圆上异于点的点发出的光线射到点处被直线反射后交椭圆于点(点与点不重合).(1)求椭圆标准方程;(2)求证:直线的斜率为定值;(3)求的面积的最大值.
设函数 (1)求的单调区间、最大值; (2)讨论关于的方程的根的个数.
若的定义域为 ,值域为,则称函数是上的“四维方军”函数. (1)设是上的“四维方军”函数,求常数的值; (2)问是否存在常数使函数是区间上的“四维方军”函数?若存在,求出的值,否则,请说明理由.
已知函数, (1)当时,求曲线在点处的切线方程; (2)求函数的极值.
已知函数是奇函数. (1)求实数的值; (2)若函数在区间上单调递增,求实数的取值范围; (3)求函数的值域.
已知:全集,函数的定义域为集合,集合 (1)求; (2)若,求实数的范围.