已知椭圆 C : x 2 + 2 y 2 = 4 . (1)求椭圆 C 的离心率; (2)设 O 为原点,若点 A 在椭圆 C 上,点 B 在直线 y = 2 上,且 O A ⊥ O B ,试判断直线 A B 与圆 x 2 + y 2 = 2 的位置关系,并证明你的结论.
已知. (1)求函数的图像在处的切线方程; (2)设实数,求函数在上的最大值. (3)证明对一切,都有成立.
已知数列{an}满足Sn+an=2n+1, (1) 写出a1, a2, a3,并推测an的表达式; (2) 用数学归纳法证明所得的结论。
设函数在及时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对于任意的,都有成立,求c的取值范围.
已知函数的图象过点P, 且在点M处的切线方程为. (1) 求函数的解析式; (2) 求函数的单调区间.
(本小题满分14分) 求证:;