对于数对序列P:a1,b1,a2,b2,…,an,bn,记T1P=a1+b1,TkP=bk+MaxTk-1P,a1+a2+…+ak2≤k≤n,其中MaxTk-1P,a1+a2+…+ak表示Tk-1P和a1+a2+…+ak两个数中最大的数. (1)对于数对序列P:2,5,4,1,求T1P,T2P的值;
(2)记m为a,b,c,d四个数中最小的数,对于由两个数对a,b,c,d组成的数对序列P:a,b,c,d和P`:c,d,a,b,试分别对m=a和m=d两种情况比较T2P和T2P`的大小;(3)在由五个数对11,8,5,2,16,11,11,11,4,6组成的所有数对序列中,写出一个数对序列P使T5P最小,并写出T5P的值.(只需写出结论).
如图,⊙I是△ABC的内切圆. (I)如果∠A=500,求∠BIC的度数; (II)若△ABC的周长为12,面积为6,求⊙I的半径
求证:(1); (2) +>+。
已知函数 ⑴若是该函数的一个极值点,求函数的单调区间 ⑵若在上是单调减函数,求的取值范围
用半径为6cm的圆形铁皮剪出一个圆心角为的扇形,制成一个圆锥形容器,扇形的圆心角多大时,容器的容积最大.
已知曲线与在第一象限内交点为P (1)求过点P且与曲线相切的直线方程; (2)求两条曲线所围图形(如图所示阴影部分)的面积S.