对于数对序列P:a1,b1,a2,b2,…,an,bn,记T1P=a1+b1,TkP=bk+MaxTk-1P,a1+a2+…+ak2≤k≤n,其中MaxTk-1P,a1+a2+…+ak表示Tk-1P和a1+a2+…+ak两个数中最大的数. (1)对于数对序列P:2,5,4,1,求T1P,T2P的值;
(2)记m为a,b,c,d四个数中最小的数,对于由两个数对a,b,c,d组成的数对序列P:a,b,c,d和P`:c,d,a,b,试分别对m=a和m=d两种情况比较T2P和T2P`的大小;(3)在由五个数对11,8,5,2,16,11,11,11,4,6组成的所有数对序列中,写出一个数对序列P使T5P最小,并写出T5P的值.(只需写出结论).
求圆被直线(是参数)截得的弦长.
已知,若矩阵所对应的变换把直线:变换为自身,求.
设函数(1)求的单调区间、最大值;(2)讨论关于的方程的根的个数.
若的定义域为 ,值域为,则称函数是上的“四维方军”函数.(1)设是上的“四维方军”函数,求常数的值;(2)问是否存在常数使函数是区间上的“四维方军”函数?若存在,求出的值,否则,请说明理由.
已知函数,(1)当时,求曲线在点处的切线方程;(2)求函数的极值.