如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1-AB-C的大小.
化简:
(本题14分)已知,其中(1)求使在上是减函数的充要条件;(2)求在的最大值;(3)解不等式。
(本题13分)在数列,,且成等差数列,成等比数列(1)求及由此猜测的通项公式并证明你的结论;(2)证明:。
(本题12分)已知展开式各项系数和比它的二项式系数和大992。(1)求展开式中含有的项;(2)求展开式中二项式系数最大的项;(3)求展开式中系数最大的项。
(本题12分)有4个不同的小球,4个不同的盒子,现需把球全部放进盒子里,(1)没有空盒子的方法共有多少种?(2)可以有空盒子的方法共有多少种?(3)恰有1个盒子不放球,共有多少种方法?(最后结果用数字作答)