(本小题满分12分)如图,三棱柱ABC—A1B1C1中,侧面ACC1A1是的菱形,且与底面ABC垂直,AC=CB=2,且AC⊥CB.(Ⅰ)求证:AC1⊥面A1BC;(Ⅱ)求直线A1B与面ABC所成角的正切值;(Ⅲ)求二面角B—A1A—C的正切值.
(本小题满分13分)已知函数的导数.a,b为实数,.(1) 若在区间上的最小值、最大值分别为、1,求a、b的值;(2) 在 (1) 的条件下,求曲线在点P(2,1)处的切线方程;(3) 设函数,试判断函数的极值点个数.
(本小题满分13分)某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从2种服装商品,2种家电商品,3种日用商品中,选出3种商品进行促销活动.(1) 试求选出的3种商品中至少有一种是日用商品的概率;(2) 商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得数额为的奖金.假设顾客每次抽奖时获奖与否的概率都是,请问:商场应将每次中奖奖金数额最高定为多少元,才能使促销方案对商场有利?
(本小题满分13分)已知函数的图象按向量平移得到函数的图象.(1) 求实数a、b的值;(2) 设函数,求函数的单调递增区间和最值.
已知半椭圆与半椭圆组成的曲线称为“果圆”,其中,是对应的焦点。A1,A2和B1,B2是“果圆”与x,y轴的交点,M是线段A1A2的中点.(1) 若三角形是底边F1F2长为6,腰长为5的等腰三角形,求“果圆”的方程;(2)若“果圆”方程为:,过F0的直线l交“果圆”于y轴右边的Q,N点,求△OQN的面积S△OQN的取值范围(3) 若是“果圆”上任意一点,求取得最小值时点的横坐标.
我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径百公里)的中心为一个焦点的椭圆. 如图,已知探测器的近火星点(轨道上离火星表面最近的点)到火星表面的距离为百公里,远火星点(轨道上离火星表面最远的点)到火星表面的距离为800百公里. 假定探测器由近火星点第一次逆时针运行到与轨道中心的距离为百公里时进行变轨,其中、分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到1百公里).