已知半椭圆与半椭圆组成的曲线称为“果圆”,其中,是对应的焦点。A1,A2和B1,B2是“果圆”与x,y轴的交点,M是线段A1A2的中点.(1) 若三角形是底边F1F2长为6,腰长为5的等腰三角形,求“果圆”的方程;(2)若“果圆”方程为:,过F0的直线l交“果圆”于y轴右边的Q,N点,求△OQN的面积S△OQN的取值范围(3) 若是“果圆”上任意一点,求取得最小值时点的横坐标.
不等式选讲已知函数。 ⑴当时,求函数的最小值; ⑵当函数的定义域为时,求实数的取值范围。
已知直线:为参数),圆(极轴与轴的非负半轴重合,且单位长度相同)。 ⑴求圆心到直线的距离; ⑵若直线被圆截的弦长为,求的值。
如图,在△中,∠是角平分线,交于⊙是△的外接圆。 ⑴求证:是⊙的切线; ⑵如果,求的长。
已知 ⑴若是的极值点,求实数值。 ⑵若对都有成立,求实数的取值范围。
已知点,点,直线、都是圆的切线(点不在轴上)。 ⑴求过点且焦点在轴上抛物线的标准方程; ⑵过点作直线与⑴中的抛物线相交于、两点,问是否存在定点,使.为常数?若存在,求出点的坐标与常数;若不存在,请说明理由。