经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如下图所示.经销商为下一个销售季度购进了130 t 该农产品.以(单位: t ,100≤ x ≤150)表示下一个销售季度内的市场需求量, T (单位:元)表示下一个销售季度内经销该农产品的利润.
(Ⅰ)将 T 表示为 x 的函数; (Ⅱ)根据直方图估计利润 T 不少于57000元的概率.
对于数列: ,实常数(1)求,并猜想 (2)证明你的猜想.
已知函数.(1)求在点处的切线方程;(2)求函数在上的最大值.
设实数数列的前项和,满足(1)若成等比数列,求和;(2)求证:当时,.
过曲线:外的点作曲线的切线恰有两条,(1)求满足的等量关系;(2)若存在,使成立,求的取值范围.
包含甲在内的甲、乙、丙个人练习传球,设传球次,每人每次只能传一下,首先从甲手中传出,第次仍传给甲,共有多少种不同的方法?为了解决上述问题,设传球次,第次仍传给甲的传球方法种数为;设传球次,第次不传给甲的传球方法种数为.根据以上假设回答下列问题:(1)求出的值;(2)根据你的理解写出与的关系式;(3)求的值及通项公式.