某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入万元作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品明年的销售量至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
已知集合(1)当时,求;(2)若,求的取值范围.
已知椭圆的离心率为,且过点.(1)求椭圆的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线A C、BD过原点O,若,(i) 求的最值.(ii) 求证:四边形ABCD的面积为定值;
设函数.(1) 求的单调区间与极值;(2)是否存在实数,使得对任意的,当时恒有成立.若存在,求的范围,若不存在,请说明理由.
某学生参加某高校的自主招生考试,须依次参加A、B、C、D、E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试。已知每一项测试都是相互独立的,该生参加A、B、C、D四项考试不合格的概率均为,参加第五项不合格的概率为(1)求该生被录取的概率;(2)记该生参加考试的项数为,求的分布列和期望.
数列的前项和为,,,等差数列满足.(1)分别求数列,的通项公式; (2)设,求证.