某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入万元作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品明年的销售量至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
设函数 (1)求函数的零点; (2)在坐标系中画出函数的图象; (3)讨论方程解的情况.
已知Z)是奇函数,又, 求的值。
已知函数的两个零点为, 设,,且,求实数的取值范围.
在平面直角坐标系中,已知圆的圆心在第二象限,半径为且与直线相切于原点.椭圆与圆的一个交点到椭圆两焦点的距离之和为. (1)求圆的方程; (2)圆上是否存在点,使、关于直线为圆心,为椭圆右焦点)对称,若存在,请求出点的坐标;若不存在,请说明理由.
抛物线上有两个定点、分别在对称轴的上下两侧,为抛物线的焦点,并且||=2,||=5,在抛物线这段曲线上求一点,使的面积最大,并求这个最大面积.