某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入万元作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品明年的销售量至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
已知函数,求 (1)函数的单调减区间与周期 (2)当时,求函数的值域
已知一元二次不等式的解集为R 1)若实数的取值范围为集合A,求A 2)对任意的,都使得不等式恒成立。求的取值范围。
已知等差数列满足:,.的前n项和为. (1)求及; (2)令(),求数列的前n项和.
在中, (1)求AB的值。 (2)求的值。
已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点,过点的直线与椭圆相交于不同的两点. (Ⅰ)求椭圆的方程; (Ⅱ)是否存直线,满足?若存在,求出直线的方程;若不存在,请说明理由.