解方程.
已知椭圆的中心在原点,离心率,右焦点为.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆的上顶点为,在椭圆上是否存在点,使得向量与共线?若存在,求直线的方程;若不存在,简要说明理由.
等差数列中,,公差,且它的第2项,第5项,第14项分别是等比数列的第2项,第3项,第4项.(Ⅰ)求数列与的通项公式;(Ⅱ)设数列对任意自然数均有成立,求的值.
已知函数.(Ⅰ)若,求函数的极值,并指出是极大值还是极小值;(Ⅱ)若,求证:在区间上,函数的图像在函数的图像的下方.
设三角形ABC的内角所对的边长分别为,,且.(Ⅰ)求角的大小;(Ⅱ)若AC=BC,且边上的中线的长为,求的面积.
已知函数的图像在点处的切线方程为.(I)求实数,的值;(Ⅱ)当时,恒成立,求实数的取值范围.