我省某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:为常数。当万元时,万元;当万元时,万元。 (参考数据:)(1)求的解析式;(2)求该景点改造升级后旅游利润的最大值。(利润=旅游增加值-投入)。
已知抛物线:,焦点为,其准线与轴交于点;椭圆:分别以为左、右焦点,其离心率;且抛物线和椭圆的一个交点记为.(1)当时,求椭圆的标准方程;(2)在(1)的条件下,若直线经过椭圆的右焦点,且与抛物线相交于两点,若弦长等于的周长,求直线的方程.
如图,三棱柱中,面,=,, 为的中点,为的中点:(1)求直线与所成的角的余弦值;(2)在线段上是否存在点,使平面,若存在,求出;若不存在,说明理由。
如图,已知椭圆(a>b>0)的离心率,过顶点A、B的直线与原点的距离为.(1)求椭圆的方程.(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
设命题:实数满足,其中,命题:实数满足.(1)若且为真,求实数的取值范围; (2)若是的充分不必要条件,求实数的取值范围
在△ABC中,已知,,B=45°, 求A、C及c .