如图,在平面直角坐标系 x O y 中,点 A ( 0 , 3 ) ,直线 l : y = 2 x - 4 ,设圆 C 的半径为1, 圆心在 l 上.
(1)若圆心 C 也在直线 y = x - 1 上,过点 A 作圆 C 的切线,求切线方程; (2)若圆 C 上存在点 M ,使 M A = 2 M O ,求圆心 C 的横坐标 a 的取值范围.
在直角坐标系中,半圆C的参数方程为(为参数,),以O为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求C的极坐标方程; (Ⅱ)直线的极坐标方程是,射线OM:与半圆C的交点为O、P,与直线的交点为Q,求线段PQ的长.
如图,已知切⊙于点,割线交⊙于两点,∠的平分线和分别交于点. 求证:(1); (2)
设函数[K] (1)若与具有完全相同的单调区间,求的值; (2)若当时恒有求的取值范围.
已知椭圆的焦距为,且过点. (1)求椭圆的方程; (2)已知,是否存在使得点关于的对称点(不同于点)在椭圆上?若存在求出此时直线的方程,若不存在说明理由.
在某次考试中,从甲乙两个班各抽取10名学生的数学成绩进行统计分析,两个班成绩的茎叶图如图所示,成绩不小于90分的为及格 (1)用样本估计总体,请根据茎叶图对甲乙两个班级的成绩进行比较。 (2)求从甲班10名学生和乙班10名学生中各抽取一人,已知有人及格的条件下乙班同学不及格的概率; (3)从甲班10人中抽取一人,乙班10人中抽取二人,三人中及格人数记为X,求X的分布列和期望。