已知 a n 是由非负整数组成的无穷数列,该数列前 n 项的最大值记为 A n ,第n项之后各项 a n + 1 , a n + 2 …的最小值记为 B n , d n = A n - B n . (1)若 a n 为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意 n ∈ N * , a n + 4 = a n ),写出 d 1 , d 2 , d 3 , d 4 的值; (2)设d为非负整数,证明: d n = - d ( n = 1 , 2 , 3 … )的充分必要条件为{an}为公差为d的等差数列; (3)证明:若 a 1 = 2 , d n = 1 ( n = 1 , 2 , 3 … ) ,则 a n 的项只能是1或2,且有无穷多项为1.
(Ⅰ)化简;(Ⅱ)已知,求的值。
已知函数(1)求函数的定义域;(2)求函数的值域;(3)求函数的周期;(4)求函数的最值及相应的值集合; (5)求函数的单调区间;(6)若,求的取值范围
将函数的图象作怎样的变换可以得到函数的图象?
己知一条正弦函数的图象,如图所示,求此函数的解析式;
求函数的定义域、周期和单调区间