已知 a n 是由非负整数组成的无穷数列,该数列前 n 项的最大值记为 A n ,第n项之后各项 a n + 1 , a n + 2 …的最小值记为 B n , d n = A n - B n . (1)若 a n 为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意 n ∈ N * , a n + 4 = a n ),写出 d 1 , d 2 , d 3 , d 4 的值; (2)设d为非负整数,证明: d n = - d ( n = 1 , 2 , 3 … )的充分必要条件为{an}为公差为d的等差数列; (3)证明:若 a 1 = 2 , d n = 1 ( n = 1 , 2 , 3 … ) ,则 a n 的项只能是1或2,且有无穷多项为1.
用分析法证明:.
有一道数学难题,在半小时内,甲能解决它的概率为,乙能解决它的概率为,两人试图独立地在半小时内解决它,求: (1)两人都未解决的概率; (2)问题得到解决的概率.
已知定义在区间上的函数的图像关于直线对称,当时,函数的图像如下图所示。 (Ⅰ) 求函数在上的解析式;
1
(Ⅱ) 求方程的解.
在△中,分别为三个内角的对边,,且. (Ⅰ) 判断△的形状; (Ⅱ) 若,求的取值范围.
某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了人,回答问题统计结果如图表所示.
(Ⅰ) 分别求出的值; (Ⅱ) 从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人? (Ⅲ) 在(Ⅱ)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.