某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为 2 3 ,中奖可以获得2分;方案乙的中奖率为 2 5 ,中奖可以获得3分;未中奖则不得分。每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品。 (Ⅰ)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为 X ,求 X ≤ 3 的概率; (Ⅱ)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?
(本小题满分10分)选修4-4:坐标系与参数方程直角坐标系和极坐标系的原点与极点重合,轴正半轴与极轴重合,单位长度相同,在直角坐标系下,曲线C的参数方程为为参数)。(1)在极坐标系下,曲线C与射线和射线分别交于A,B两点,求的面积;(2)在直角坐标系下,直线的参数方程为(为参数),求曲线C与直线的交点坐标。
(本小题满分10分)选修4-1:几何证明选讲。如图,E是圆O内两弦AB和CD的交点F是AD延长线上一点,FG与圆O相切于点G,且EF=FG,求证:(1);(2)EF//BC。
(本小题满分12分)已知函数 (1)若是单调函数,求的取值范围; (2)若有两个极值点,证明:
(本小题满分12分)已知抛物线的焦点为F,过点F作直线与抛物线交于A,B两点,抛物线的准线与轴交于点C。(1)证明:;(2)求的最大值,并求取得最大值时线段AB的长。
(本小题满分12分)如图,在四棱锥S—ABCD中,底面ABCD,底面ABCD是矩形,且,E是SA的中点。(1)求证:平面BED平面SAB;(2)求平面BED与平面SBC所成二面角(锐角)的大小。