设数列 a n 满足 a 1 = 2 , a 2 + a 4 = 8 ,且对任意 n ∈ N * ,函数 f x = a n - a n + 1 + a n + 2 x + a n + 1 · cos x - a n + 2 · sin x 满足 f ` π 2 = 0
(Ⅰ)求数列 a n 的通项公式; (Ⅱ)若 b n = 2 a n + 1 2 a n ,求数列 b n 的前 n 项和 S n .
设椭圆的左、右焦点分别为,上顶点为,在轴负半轴上有一点,满足,且.(1)求椭圆的离心率;(2)若过三点的圆恰好与直线相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于两点,在轴上是否存在点使得,如果存在,求出的取值范围,如果不存在,说明理由.
如图,圆柱的高为2,底面半径为3,AE、DF是圆柱的两条母线,B、C是下底面圆周上的两点,已知四边形ABCD是正方形.(1)求证:;(2)求正方形ABCD的边长;(3)求直线与平面所成角的正弦值.
已知函数,(为常数)(I)当时,求函数的单调区间; (II)若函数有两个极值点,求实数的取值范围
某品牌电视生产厂家有A、B两种型号的电视机参加了家电下乡活动,若厂家A、B对两种型号的电视机的投放金额分别为p、q万元,农民购买电视机获得的补贴分别为p、lnq万元,已知A、B两种型号的电视机的投放总额为10万元,且A、B两种型号的电视机的投放金额均不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值(精确到0.1,参考数据:).
已知函数,过点作曲线的切线,求切线方程.